Report Number	160900307SHA-001		4-Nov-2016	Revised:\|None
Standard(s)	Medical Electrical Equipment - Part 1: General Requirements For Basic Safety And Essential Performance [AAMI ES60601-1:2005 +A1] Medical Electrical Equipment - Part 1: General Requirements For Basic Safety And Essential Performance [CSA C22.2\#60601-1:2014 Ed.3] Medical Electrical Equipment - Part 1-11: General Requirements For Basic Safety And Essential Performance - Collateral Standard: Requirements For Medical Electrical Equipment And Medical Electrical Systems Used In The Home Healthcare Environment [IEC 60601-111:2015 Ed.2]			
Applicant	GlobTek, Inc.		Manufactur	GlobTek (Suzhou) Co., Ltd.
Address	186 Veterans Dr NORTHVALE N USA		Address	Building 4 No. 76 JinLing East Road Suzhou Industrial Park SUZHOU Jiangsu 215021
Country	USA		Country	China
Contact	Hans Moritz		Contact	Demon Zhou
Phone	(201)784-1000 E		Phone	8651262790301 Ext. 189
FAX	(201)784-0111		FAX	8651262790355
Email	Moritzh@globtek		Email	demon.zhou@globtek.cn

2.0 Product Description

Product	Medical Power Supply
Brand name	GlobTek
Description	Product covered by this report is medical power supply module. Desktop power supplies are provided with suitable external enclosure. The top and bottom parts of the enclosure are ultrasonic welded. Open frame power supplies are without external enclosure. The external enclosure will be provided within the end product. The products were tested to be suitable for connection to $\leq 16 \mathrm{~A}$ (IEC) and $\leq 20 \mathrm{~A}$ (USA) branch circuit in series. The unit is approved for TN mains star connections. The unit provides internally two fuses. The power supplies are rated class I or class II or class II units may have an optional functional earth connection. Open frame and encapsulated class I power supplies shall be properly bonded to the main protective bonding termination in the end product. All the types are designed for continuous operation.
Models	GT followed by M, - or H; followed by 91099-; followed by 01 to 60; followed by 09, 15, 24 or 48; may be followed by -0.01 to -23.9; followed by -T2, -T2A, -T3, -T3A, -T2L, -T2AL, T3L, T3AL, -R2, -R3A, -F, -FW, -P2 or -P3; may be followed by six characters. GT followed by M, - or H; followed by 96600-; followed by 01 to 60 ; followed by 05 to 54 or 5.0 to 54.0; followed by -T2, -T2A, -T3, -T3A, -T2L, -T2AL, T3L, -T3AL, -R2, -R3A, -F, -FW, -P2 or P3; may be followed by six characters.
Model Similarity	All the models have similar construction of PCB but the rating input and output are different.
Ratings	96600 series, output $5-54 \mathrm{Vdc}$, Max 8A, 60W 91099 series, output $5-48 \mathrm{Vdc}$, Max 6A, 60W
Other Ratings	N/A
Conditions of Acceptability	The products covered in this Report are incomplete in construction features or limited in performance capabilities and are intended for use and evaluation in other products. Consideration should be given to the following when the component is used in or with another product. 1.Scope of Power Supply evaluation defers the following clauses to be determined as part of the end product investigation: a) Clause 7.9 (Accompanying Documents of power adapter model are provided for some critical issue like technical data, safety warnings, necessary information to set up. Further evaluation is needed for both power adapter model and open frame model on end product level.), b) Clause 8.11.5 (Mains Fuse with High Breaking Capacity), c) Clause 9 (ME Hazard), except 9.1 and 9.3 are evaluated, d) Clause 10 (Radiation), e) Clause 11.7 (Biocompatibility), f) Clause 14 (PEMS), g) Clause 16 (ME Systems), h) Clause 17 (EMC) 2. For open frame model - Suitability of the enclosure should be evaluated when installed in the end product including access to energized parts, clearance \& creepage distance measurement and mechanical strength. - Temperature Testing should be performed on this component when installed in the end product.

3.0 Product Photographs

Photo 1 - External view for GTM96600 series

Photo 2 - Internal view for GTM96600 series (Class I)

3.0 Product Photographs

Photo 3 - PCB for GTM96600 series (Class I)

Photo 4 - PCB for GTM96600 series (Class II)

3.0 Product Photographs

Photo 5 - External view for GTM91099 series (Class II)

Photo 6 - PCB for GTM96600 series (Class II)

3.0 Product Photographs

Photo 7 - External view for GTM96600 series (Class I)

Photo 8 - PCB for GTM96600 series (Class I)

3.0 Product Photographs

Photo 9 - External view for GTM91099 series (Class II)

Photo 10 - PCB for GTM91099 series (Class I)

3.0 Product Photographs

Photo 11 - External view for GTM91099 series (Encapsulated)

Photo 12 - Internal view for GTM91099 series (Encapsulated)

3.0 Product Photographs

Photo 13 - Internal view for GTM91099 series (Encapsulated)

Photo 14 - Internal view for GTM91099 series (open frame)

3.0 Product Photographs

Photo 15 - Internal view for GTM91099 series (open frame)

Photo 16-Transformer

3.0 Product Photographs

Photo 17-Transformer

4.0 Critical Components						
$\begin{aligned} & \text { 무 } \\ & \text { 뭉 } \\ & \text { \# } \end{aligned}$	$\left\|\begin{array}{c} \text { Item } \\ \text { no. } \end{array}\right\|$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\begin{gathered} 3,4, \\ 6,8, \\ 10 \end{gathered}$	2	Fuse	Conquer Electronics Co., Ltd.	MST series	T3.15A, 250V	cURus
			Ever Island Electric Co., Ltd. And Walter Electric	2010, ICP	T3.15A, 250V	cURus
			Bel Fuse Ltd.	RST-Serie(s)	T3.15A, 250V	cURus
			Cooper Bussmann LLC	SS-5	T3.15A, 250V	cURus
			Shenzhen Lanson Electronics Co. Ltd.	SMT	T3.15A, 250V	cURus
			Das \& Sons International Ltd.	385T series	T3.15A, 250V	cURus
			Dongguan Better Electronics Technology Co., Ltd.	932	T3.15A, 250V	cURus
			Hollyland Company Limited	5ET	T3.15A, 250V	cURus
			Sunny East Enterprise Co. Ltd.	CFD-Serie(s)	T3.15A, 250V	cURus
			Conquer Electronics Co., Ltd.	MET series	T3.15A, 250V	cURus
			Zhongshan Lanbao Electrical Appliances Co., Ltd.	RTI-10 Serie(s)	T3.15A, 250V	cURus

4.0 Critical Components						
$\begin{aligned} & \text { 꾸 } \\ & \stackrel{\rightharpoonup}{0} \\ & \# \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { tem } \\ \text { no. } \end{array}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\begin{gathered} 3,4, \\ 6,8, \\ 10 \end{gathered}$	3	Y capacitor (CY1, CY2) (optional)	TDK-EPC Corporation, Capacitors Group	CD	Y1, AC250V, max 2200pF, 25/085/21/B	cURus
			Success Electronics Co., Ltd.	SE	Y1, AC250V, or AC500V, max 2200 pF, $40 / 125 / 56 / \mathrm{C}$	cURus
			Success Electronics Co., Ltd.	SB	$\begin{aligned} & \mathrm{Y} 1, \mathrm{AC} 250 \mathrm{~V}, \\ & \max 2200 \mathrm{pF}, \\ & 4 / 125 / 56 / \mathrm{C} \end{aligned}$	cURus
			Murata Mfg. Co., Ltd.	KX	$\begin{aligned} & \mathrm{Y} 1, \mathrm{AC} 250 \mathrm{~V}, \\ & \max 2200 \mathrm{pF}, \\ & 25 / 125 / 21 / \mathrm{B} \end{aligned}$	cURus
			Walsin Technology Corp	AH	$\begin{aligned} & \mathrm{Y} 1, \mathrm{AC} 250 \mathrm{~V}, \\ & \max 2200 \mathrm{pF}, \\ & 25 / 125 / 21 / \mathrm{C} \\ & \hline \end{aligned}$	cURus
			JYA-NAY Co., Ltd.	JN	$\begin{aligned} & \mathrm{Y} 1, \mathrm{AC} 250 \mathrm{~V}, \\ & \text { max } 2200 \mathrm{pF}, \\ & 25 / 125 / 21 / \mathrm{C} \\ & \hline \end{aligned}$	cURus
			Haohua Electronic Co.	CT 7	Y1, AC250V, max 2200 pF , 30/125/56/C	cURus
			Jyh Chung Electronic Co., Ltd.	JD	$\begin{aligned} & \mathrm{Y} 1, \mathrm{AC} 250 \mathrm{~V}, \\ & \text { max 2200pF, } \\ & 40 / 085 / 21 / \mathrm{C} \end{aligned}$	cURus
			Jerro Electronics Corp.	JX-series	$\begin{aligned} & \mathrm{Y}, \mathrm{AC} 250 \mathrm{~V}, \\ & \max 2200 \mathrm{pF}, \\ & 40 / 125 / 21 / \mathrm{C} \end{aligned}$	cURus
			$\begin{aligned} & \text { WELSON } \\ & \text { INDUSTRIAL CO } \\ & \text { LT D } \end{aligned}$	WD	Y1, AC250V, max 2200 pF , 55/125/21/C	cURus

4.0 Critical Components						
$\begin{aligned} & \overline{0} \\ & \bar{\partial} \\ & \stackrel{\rightharpoonup}{0} \\ & \# \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Item } \\ & \text { no. } \end{aligned}\right.$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\begin{gathered} 3,4, \\ 6,8, \\ 10 \end{gathered}$	4	X capacitor (CX1) (optional)	Cheng Tung Industrial Co., Ltd	CTX	Min. 300VAC, Max. $0.47 \mu \mathrm{~F}, 110$ ${ }^{\circ} \mathrm{C}, \mathrm{X} 1$ or X 2	cURus
			Tenta Electric Industrial Co. Ltd.	MEX	$\begin{aligned} & \text { Min. 250VAC, } \\ & \text { Max. 0.47 } 4 \mathrm{~F}, \\ & 40 / 100 / 21 / \mathrm{B}, \mathrm{X1} \\ & \text { or X2 } \\ & \hline \end{aligned}$	cURus
			Joey Electronics (Dong Guan) Co., Ltd.	MPX	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/105/21/B, X1 or X2	cURus
			Ultra Tech Xiphi Enterprise Co. Ltd.	HQX	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/100/21/C, X1 or X2	cURus
			Yuon Yu Electronics Co. Ltd.	MPX	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/100/21/C, X1 or X2	cURus
			Sinhua Electronics (Huzhou) Co., Ltd	MPX	$\begin{aligned} & \hline \text { Min. 250VAC, } \\ & \text { Max. } 0.47 \mu \mathrm{~F}, \\ & 40 / 100 / 21 / \mathrm{C}, \mathrm{X1} \\ & \text { or X2 } \\ & \hline \end{aligned}$	cURus
			Jiangsu Xinghua Huayu Electronics Co., Ltd.	MPX - Series	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/100/21/C, X1 or X2	cURus
			Dain Electronics Co., Ltd.	$\begin{array}{\|l\|} \text { MEX } \\ \text { MPX } \\ \text { NPX } \end{array}$	$\begin{aligned} & \text { Min. 250VAC, } \\ & \text { Max. 0.47 FF, } \\ & 40 / 100 / 21 / \mathrm{C}, \mathrm{X1} \\ & \text { or X2 } \\ & \hline \end{aligned}$	cURus
			Shenzhen Jinghao Capacitor Co., Ltd.	CBB62B	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/110/56/B, X1 or X2	cURus
			Foshan Shunde Chuang Ge Electronic Industrial Co., Ltd.	MKP-X2	Min. 250VAC Max. $0.47 \mu \mathrm{~F}$, 40/105/21/B, X2	cURus
			Okaya Electric Industries Co. LTD	RE-Series	Min. 250VAC Max. 0.47 FF , 55/100/56/C, X2	cURus
			VISHAY Capacitors Belgium NV	F 1772	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/100/56/C, X2	cURus
			Winday Electronic Industrial Co., Ltd.	MPX series	Min. 250VAC, Max. $0.47 \mu \mathrm{~F}$, 40/100/21/C, X2	cURus

4.0 Critical Components						
$\begin{aligned} & \text { 무 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \# \end{aligned}$	$\begin{aligned} & \text { Item } \\ & \text { no. } \end{aligned}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\left.\begin{gathered} 3,4, \\ 6,1 \\ 0 \end{gathered} \right\rvert\,$	5	Photo coupler U1/U4	Everlight Electronics Co., Ltd.	EL817	$\begin{aligned} & \text { Dti }=0.5 \mathrm{~mm} \text { Int. }, \\ & \text { dcr }=6.0 \mathrm{~mm} \\ & \text { EXT. dcr }=7.7 \mathrm{~mm}, \\ & \text { thermal cycling } \\ & \text { test }, 110^{\circ} \mathrm{C} \end{aligned}$	cURus
			COSMO Electronics Corporation	K1010 / KP1010	Dti $=0.6 \mathrm{~mm}$ Int. , dcr=4.0mm EXT.dcr=5.0mm, thermal cycling test, $115^{\circ} \mathrm{C}$	cURus
			Lite-On Technology Corporation	LTV-817	Dti $=0.8 \mathrm{~mm}$ Int. , EXT.dcr=7.8mm, thermal cycling test, $100^{\circ} \mathrm{C}$	cURus
			Fairchild Semiconductor Pte Ltd.	H11A817B / FOD817B	Insulation voltage: 850V; Transient overvoltage: 6000V; CTI175; Int. Cr/ Ext. Cr: $\geq 7,0 / 7,0 \mathrm{~mm}$; 30/110/21	cURus
			Sharp Corporation Electronic Components and Devices Group	PC817	Insulation voltage: 890V; Transient overvoltage: 9000 V Int. Cr/ Ext. Cr: 7.62/ 7.62 mm ; 30/100/21	cURus
			Bright Led Electronics Corp.	BPC-817 A/B/C/D/L BPC-817 M BPC-817 S	Dti= 0.4 mm EXT.dcr=7.0mm, thermal cycling test, $100^{\circ} \mathrm{C}$	cURus
			Toshiba Corporation	TLP781F	$\begin{aligned} & \text { Dti > 0.4mm, Ext } \\ & \text { cr }>8.0 \mathrm{~mm}, \\ & \text { Isolation } \\ & 3000 \mathrm{Vac} \text { min., } \\ & 110^{\circ} \mathrm{C} \text { min., } \\ & \text { Thermal cycling } \\ & \text { test } \\ & \hline \end{aligned}$	cURus

4.0 Critical Components						
$\begin{aligned} & \text { 물 } \\ & \underline{\partial} \\ & \text { \# } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Item } \\ & \text { no. } \end{aligned}\right.$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\begin{gathered} 4,1 \\ 0 \end{gathered}$	6	Varistor MOV1/MOV(Opti onal)	Thinking Electronic Industrial Co., Ltd.	TVR10471K, TVR14471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is $\mathrm{V}-0$	cURus
			Centra Science Corp.	10D471K, 14D471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is $\mathrm{V}-0$	cURus
			Success Electronics Co., Ltd.	SVR10D471K SVR14D471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is $\mathrm{V}-0$	cURus
			Walsin Technology Co., Ltd.	14D471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is V-0	cURus
			Lien Shun Electronics Co., Ltd.	14D471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is V-0	cURus
			Ceramate Techn. Co., Ltd.	GNR10D471K GNR14D471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is $\mathrm{V}-0$	cURus
			Brightking (Shenzhen) Co., Ltd.	14D471K 10D471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is V-0	cURus
			Joyin Co., Ltd.	JVR10N471K JVR14N471K	Max. Continuous voltage: min $300 \mathrm{Vac}(\mathrm{rms})$, $85^{\circ} \mathrm{C}$, The coating is $\mathrm{V}-0$	cURus

4.0 Critical Components						
글 항 \#	$\begin{aligned} & \text { Item } \\ & \text { no. }{ }^{1} \end{aligned}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
2	7	Appliance inlet CON1 Class I units	Zhejiang LECI Electronics Co., Ltd.	DB-6	2.5A, 250Vac	cURus
			Rich Bay Co., Ltd.	R-30790	2.5A, 250Vac	cURus
			Sun Fair Electric Wire \& Cable (HK) Co. Ltd.	S-02	2.5A, 250Vac	cURus
			$\begin{array}{\|l\|} \hline \text { TECX-UNIONS } \\ \text { Technology } \\ \text { Corporation } \\ \hline \end{array}$	TU-333	2.5A, 250Vac	cURus
			Rong Feng Industrial Co., Ltd.	RF-190	2.5A, 250Vac	cURus
			Inalways Corporation	0724	2.5A, 250Vac	cURus
			Zhe Jiang Bei Er jia	ST-A04-002	2.5A, 250Vac	cURus
			Shenzhen Delikang Electronics Technology Co. Ltd.	CDJ-2	2.5A, 250Vac	cURus
7	8	Appliance inlet CON1 Class I units	Zhejiang LECI Electronics Co., Ltd.	DB-14	10A, 250Vac	cURus
			Rich Bay Co., Ltd.	R-301SN	10A, 250Vac	cURus
			Sun Fair Electric Wire \& Cable (HK)Co. Ltd.	S-03	10A, 250Vac	cURus
			$\begin{aligned} & \hline \text { TECX-UNIONS } \\ & \text { Technology } \\ & \text { Corporation } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TU-301-S } \\ & \text { TU-301-SP } \end{aligned}$	10A, 250Vac	cURus
			Rong Feng Industrial Co., Ltd.	SS-120	10A, 250Vac	cURus
			Inalways Corporation	0711	10A, 250Vac	cURus
			Zhe Jiang Bei Er jia	ST-A01-003J	10A, 250Vac	cURus

4.0 Critical Components						
	$\begin{aligned} & \text { Item } \\ & \text { no. } \end{aligned}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
9	9	Appliance inlet CON1 Class II units	Zhejiang LECI Electronics Co., Ltd.	DB-8	2.5A, 250Vac	cURus
			Rich Bay Co., Ltd.	R-201SN90	2.5A, 250Vac	cURus
			Sun Fair Electric Wire \& Cable (HK)Co. Ltd.	S-01	2.5A, 250Vac	cURus
			$\begin{aligned} & \hline \text { TECX-UNIONS } \\ & \text { Technology } \\ & \text { Corporation } \\ & \hline \end{aligned}$	SO-222	2.5A, 250Vac	cURus
			Rong Feng Industrial Co., Ltd.	RF-180	2.5A, 250Vac	cURus
			Inalways Corporation	0721	2.5A, 250Vac	cURus
			Zhe Jiang Bei Er jia	ST-A03-005	2.5A, 250Vac	cURus
			Shenzhen Delikang Electronics Technology Co. Ltd.	CDJ-8	2.5A, 250Vac	cURus
$\begin{aligned} & 14, \\ & 15 \end{aligned}$	10	Input connector CON1	NELTRON INDUSTRIAL CO LTD	2114S	Min 240V; Min 1.5A; Flame class min. V--2;	cURus
			JOINT TECH ELECTRONIC INDUSTRIAL CO LTD	A7920 series A3960 series	Min 250V; Min 7A; Flame class min. V--2;	cURus
			ZHEJIANG HONGXING ELECTRICAL CO LTD	HX396XX-YYY series	Min 250V; Min 5A; Flame class min. V--2;	cURus

4.0 Critical Components						
	$\begin{array}{\|l\|l} \text { Item } \\ \text { no. } \end{array}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\begin{gathered} 3,1 \\ 0 \end{gathered}$	11	Earthing wire	KUNSHAN NEW ZHICHENG ELECTRONICS TECHNOLOGIES CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			$\begin{aligned} & \text { ZHUANG SHAN } \\ & \text { CHUAN } \\ & \text { ELECTRICAL } \\ & \text { PRODUCTS } \\ & \text { (KUNSHAN) CO } \\ & \text { LTD } \\ & \hline \end{aligned}$	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			DONGGUAN CHUANTAI WIRE PRODUCTS CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			YONG HAO ELECTRICAL INDUSTRY CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			DONGGUAN GUNEETAL WIRE \& CABLE CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			SHENG YU ENTERPRISE CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			KUNSHAN XINGHONGMEN G ELECTRONIC CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			SUZHOU YEMAO ELECTRONIC CO LTD	$\begin{aligned} & 1015 \\ & 1007 \\ & 1185 \end{aligned}$	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus
			Various	Various	Min. 20 AWG, Min. 300V, Min. $80^{\circ} \mathrm{C}$	cURus

4．0 Critical Components						
$\begin{array}{\|l} \hline \frac{0}{0} \\ ⿳ 亠 丷 厂 彡 ⿱ 丆 ⿱ ⿴ 囗 ⿱ 一 一 八 刂 \end{array}$	$\left\lvert\, \begin{array}{\|l\|l} \text { Item } \\ \text { no. } \end{array}\right.$	Name	Manufacturer／ trademark ${ }^{2}$	Type／model ${ }^{2}$	Technical data and securement means	Mark（s）of conformity 3
$\begin{aligned} & 12, \\ & 13 \end{aligned}$	12	Connection wiring	KUNSHAN NEW ZHICHENG ELECTRONICS TECHNOLOGIES CO LTD	1015 1007 2468 2464 185	Min． 20 AWG， Min．300V，Min． $80^{\circ} \mathrm{C}$	cURus
			Various	1015 1007 2468 2464 1185 SPT－1 SPT－2	Min． 20 AWG， Min．300V，Min． $80^{\circ} \mathrm{C}$	cURus
$\begin{array}{\|l\|} \hline 1,5, \\ 7,9 \end{array}$	13	Output cord	Various	Various	Min．24AWG， min．300Vac， $\min .80^{\circ} \mathrm{C}$	cURus

4.0 Critical Components						
	$\begin{aligned} & \text { Item } \\ & \text { no. } \end{aligned}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
3	14	Heat-shrinkable tubing (Optional)	SHENZHEN WOER HEATSHRINKABLE MATERIAL CO LTD	RSFR-H RSFR RSFR-HPF	$600 \mathrm{~V}, 125^{\circ} \mathrm{C}$	cURus
			QIFURUI ELECTRONICS CO	QFR-h	$600 \mathrm{~V}, 125^{\circ} \mathrm{C}$	cURus
			DONGGUAN SALIPT CO LTD	SALIPT S-901-300 SALIPT S $901-600$	Min. $300 \mathrm{~V}, 125^{\circ} \mathrm{C}$	cURus
			GUANGZHOU KAIHENG ENTERPRISE GROUP	K-2 (+) K-2 (CB)	Min. $300 \mathrm{~V}, 125^{\circ} \mathrm{C}$	cURus
			CHANGYUAN ELECTRONICS (SHENZHEN) CO LTD	CB-HFT	Min. $300 \mathrm{~V}, 125^{\circ} \mathrm{C}$	cURus
1		Enclosure	SABIC INNOVATIVE PLASTICS B V	SE1X, SE1	PPE+PS, Min. V1, Min. thickness: $2.0 \mathrm{~mm}, 105^{\circ} \mathrm{C}$	cURus
				SE100	PPE+PS, Min. V1, Min. thickness: $2.0 \mathrm{~mm}, 105^{\circ} \mathrm{C}$	cURus
				C2950	PC/ABS, Min. V0 , Min. thickness:2.0mm, $85^{\circ} \mathrm{C}$	cURus
				CX7211 EXCY0098	PC/ABS, Min. V1, Min. thickness:2.0mm, $90^{\circ} \mathrm{C}$	cURus
	15			945	PC, Min. V-1, Min. thickness: 2.0mm, $120^{\circ} \mathrm{C}$	cURus
				HF500R	PC, V-0, Min. thickness:2.0mm, $125^{\circ} \mathrm{C}$	cURus
				PA-765A	ABS, Min. V-0, Min. thickness: $2.0 \mathrm{~mm}, 85^{\circ} \mathrm{C}$	cURus
			CORPORATION	PC-540	PC/ABS, Min. V0, Min. thickness: $2.0 \mathrm{~mm}, 70^{\circ} \mathrm{C}$	cURus
			TEIJIN CHEMICALS LTD	$\begin{aligned} & \mathrm{LN}-1250 \mathrm{P} \\ & \mathrm{LN}-1250 \mathrm{G} \end{aligned}$	PC, Min. V-0, Min. thickness:2.0mm, $115^{\circ} \mathrm{C}$	cURus

4.0 Critical Components						
$\begin{aligned} & \text { 무 } \\ & \text { 흥 } \\ & \text { \# } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Item } \\ \text { no. } \end{array}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
$\begin{aligned} & 6,8, \\ & 10, \\ & 12 \end{aligned}$	16	Transformer (T1)	GlobTek BOAM HAOPUWEI	TF058 for GTM96600,5V- 8.9 V TF059 forGTM96600, 9V- 15 V TF063 forGTM96600, 15.1V- 20V TF060 forGTM96600, 20.1V- 28V TF064 forGTM96600, 28.1V- 40V TF061 forGTM96600, 40.1V- 54 V XF00794 for GTM91099, $5 \mathrm{~V}-$ 9 V XF00694 for GTM91099, $9.1 \mathrm{~V}-15 \mathrm{~V}$ XF00695 for GTM91099, $15.1 \mathrm{~V}-24 \mathrm{~V}$ XF00731 for GTM91099, $24.1 \mathrm{~V}-48 \mathrm{~V}$	with critical component listed below	NR

4.0 Critical Components						
	$\begin{array}{\|c\|} \text { Item } \\ \text { no. } \end{array}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
16	17	Magnet wire	PACIFIC ELECTRIC WIRE \& CABLE (SHENZHEN) CO LTD	UEWN/U	MW28-C, 1300C	cURus
			PACIFIC ELECTRIC WIRE \& CABLE (SHENZHEN) CO LTD	UEWS/U	MW75-C, 1300C	cURus
			JUNG SHING WIRE CO LTD	UEW-4	MW75C, $130^{\circ} \mathrm{C}$	cURus
			JUNG SHING WIRE CO LTD	UEY-2	MW28-C, $130^{\circ} \mathrm{C}$	cURus
			JIANGSU HONGLIU MAGNET WIRE TECHNOLOGY CO LTD	2UEW/130	MW75-C, $130^{\circ} \mathrm{C}$	cURus
			CHANGZHOU DAYANG WIRE \& CABLE CO LTD	2UEW/130	MW75-C, $130^{\circ} \mathrm{C}$	cURus
			WUXI JUFENG COMPOUND LINE CO LTD	2UEWB	MW75\#, $130^{\circ} \mathrm{C}$	cURus
			JIANGSU DARTONG M \& E CO LTD	UEW	MW 75-C, $130^{\circ} \mathrm{C}$	cURus
			SHANDONG SAINT ELECTRIC CO LTD	UEW/130	MW75\#, $130^{\circ} \mathrm{C}$	cURus
			ZHEJIANG LANGLI ELECTRIC EQUIPMENTS CO LTD	UEW	MW 79\#, $130^{\circ} \mathrm{C}$	cURus

4.0 Critical Components						
	$\begin{array}{\|l\|l} \text { Item } \\ \text { no. } \end{array}$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3
3	18	Triple-insulated wire (Secondary) (not shown)	Great Leoflon Industrial Co., Ltd.	TRW (B) Serie(s)	Class B, reinforced insulation	cURus
			COSMOLINK CO. Ltd.	TIW-M Serie(s)	Class B, reinforced insulation	cURus
			Furukawa Electric Co., Ltd.	TEX-E	Class B, reinforced insulation	cURus
			TOTOKU ELECTRIC CO LTD	TIW-2	Reinforced insulation, rated $130^{\circ} \mathrm{C}$ (Class B)	cURus
			$\begin{aligned} & \text { E\&B } \\ & \text { TECHNOLOGY } \\ & \text { CO LTD } \\ & \hline \end{aligned}$	$\begin{aligned} & E \& B-X X X B \\ & E \& B-X X X B-1 \end{aligned}$	Reinforced insulation, Class B	cURus
			CHANGYUAN ELECTRONICS (SHENZHEN) CO LTD	CB-TIW	Reinforced insulation, Class B	cURus
			SHENZHEN JIUDING NEW MATERIAL CO LTD	DTIW-B	Reinforced insulation, Class B	cURus
16	19	Bobbin	CHANG CHUN PLASTICS CO LTD	$\begin{array}{\|l\|} \text { T375J } \\ \text { T375HF } \end{array}$	$\begin{array}{\|l} \hline \mathrm{V}-0,150^{\circ} \mathrm{C}, \\ \text { thickness } 0,45 \\ \text { mm min. } \\ \hline \end{array}$	cURus
			CHANG CHUN PLASTICS CO LTD SU	4130	$\begin{array}{\|l} \hline \mathrm{V}-0,140^{\circ} \mathrm{C}, \\ \text { thickness } 0,74 \\ \text { mm min. } \end{array}$	cURus
			SUMITOMO BAKELITE CO LTD	PM-9820	$\mathrm{V}-0,150^{\circ} \mathrm{C}$ thickness 0,45 mm min.	cURus
			HITACHI CHEMICAL CO LTD	CP-J-8800	$\begin{aligned} & \mathrm{V}-0,150^{\circ} \mathrm{C}, \\ & \text { thickness } 0,45 \\ & \mathrm{~mm} \text { min. } \end{aligned}$	cURus

4.0 Critical Components								
	$\left\lvert\, \begin{gathered} \text { Item } \\ \text { no. } \end{gathered}\right.$	Name	Manufacturer/ trademark ${ }^{2}$	Type / model ${ }^{2}$	Technical data and securement means	Mark(s) of conformity 3		
17	20	Insulating tape	3M COMPANY ELECTRICAL MARKETS DIV (EMD)	$\begin{aligned} & 1350 \mathrm{~F}-1 \\ & 1350 \mathrm{~T}-1 \\ & 44 \end{aligned}$	Min. $130^{\circ} \mathrm{C}$	cURus		
			$\begin{array}{\|l\|} \hline \text { BONDTEC } \\ \text { PACIFIC CO LTD } \\ \hline \end{array}$	370S	Min. $130^{\circ} \mathrm{C}$	cURus		
			JINGJIANG YAHUA PRESSURE SENSITIVE GLUE CO LTD	$\begin{array}{\|l} \mathrm{PZ} \\ \mathrm{CT} \\ \mathrm{WF} \end{array}$	Min. $130^{\circ} \mathrm{C}$	cURus		
			JINGJIANG JINGYI ADHESIVE PRODUCT CO LTD	JY25-A	Min. $130^{\circ} \mathrm{C}$	cURus		
			CHANG SHU LIANG YI TAPE INDUSTRY CO LTD	LY-XX	Min. $130^{\circ} \mathrm{C}$	cURus		
3	21	PTFE tubing (not shown)	GREAT HOLDING INDUSTRIAL CO LTD	TFT / TFS	Min. $300 \mathrm{~V}, 200^{\circ} \mathrm{C}$	cURus		
			SHENZHEN WOER HEATSHRINKABLE MATERIAL CO LTD	WF	$600 \mathrm{~V}, 200^{\circ} \mathrm{C}$	cURus		
			CHANGYUAN ELECTRONICS (SHENZHEN) CO LTD	CB-TT-T / CB-TT-S	Min. $300 \mathrm{~V}, 200^{\circ} \mathrm{C}$	cURus		
NOTES: 1) Not all item numbers are indicated (called out) in the photos, as their location is obvious. 2) "Various" means any type, from any manufacturer that complies with the "Technical data and securement means" and meets the "Mark(s) of conformity" can be used. 3) Indicates specific marks to be verified, which assures the agreed level of surveillance for the component. "NR" - indicates Unlisted and only visual examination is necessary. "See 5.0" indicates Unlisted components or assemblies to be evaluated periodically refer to section 5.0 for details.								

5.0 Critical Unlisted CEC Components

No Unlisted CEC components are used in this report.

6.0 Critical Features

Recognized Component - A component part, which has been previously evaluated by an accredited certification body with restrictions and must be evaluated as part of the basic product considering the restrictions as specified by the Conditions of Acceptability.

Listed Component - A component part, which has been previously Listed or Certified by an accredited Certification Organization with no restrictions and is used in the intended application within its ratings.

Unlisted Component - A part that has not been previously evaluated to the appropriate designated component standard. It may also be a Listed or Recognized component that is being used outside of its evaluated Listing or component recognition.

Critical Features/Components - An essential part, material, subassembly, system, software, or accessory of a product that has a direct bearing on the product's conformance to applicable requirements of the product standard.
Construction Details - For specific construction details, reference should be made to the photographs and descriptions. All dimensions are approximate unless specified as exact or within a tolerance. In addition to the specific construction details described in this Report, the following general requirements also apply.

1. Spacing - See insulation diagram in section 7.0
2. Mechanical Assembly - Components such as switches, fuseholders, connectors, wiring terminals and display lamps are mounted and prevented from shifting or rotating by the use of lockwashers, starwashers, or other mounting format that prevents turning of the component.
3. Corrosion Protection - All ferrous metal parts are protected against corrosion by painting, plating or the equivalent.
4. Accessibility of Live Parts - For adapter models, all uninsulated live parts in primary circuitry are housed within a non-metallic enclosure constructed with no openings and metal enclosure earthed with ventilation holes other than those specifically described in Sections 3 and 4.
5. Grounding - All exposed dead-metal parts and all dead-metal parts within the enclosure that are exposed are connected to the grounding lead of the power supply cord and the equipment grounding terminal.
6. Polarized Connection - This product is not provided with a polarized power supply connection.
7. Internal Wiring - Internal wiring is routed away from sharp or moving parts. Internal wiring leads terminating in soldered connections are made mechanically secure prior to soldering. Recognized Component separable (quick disconnect) connectors of the positive detent type, closed loop connectors, or other types specifically described in the text of this report are also acceptable as internal wiring terminals. At points where internal wiring passes through metal walls or partitions, the wiring insulation is protected against abrasion or damage by plastic bushings or grommets. All wiring is minimum 24 AWG , with a minimum rating of $300 \mathrm{~V}, 80^{\circ} \mathrm{C}$.
8. Schematics - Refer to Illustration No(s). 5-8 for schematics \& PCB layout requiring verification during Field Representative Inspection Audits.
9. Markings - Refer to illustrations No(s). 9-10 for details.
10. Installation, Operating and Safety Instructions - Accompanying Documents are provided for some critical issue like technical data, safety warnings, necessary information to set up, but further evaluation is needed on end product level.

7.0 Illustrations

Illustration 1 - Spacings

Class II

TABLE: INSULATION DIAGRAM (GT*91099*****series)									P
Pollution degree: 2					2				-
Overvoltage category: II					11				-
Altitude ...: 4					4000m				-
Additional details on parts considered as applied parts. \qquad					\boxtimes None \square Areas(See Clause 4.6 for details)				-
Area	Number and type of Means of Protection: MOOP, MOPP	CTI	Working voltage		Requiredcreepage (mm)	$\begin{gathered} \text { Require } \\ \text { d } \\ \text { clearanc } \\ \mathrm{e}(\mathrm{~mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Measure } \\ \text { d } \\ \text { crepag } \\ e(\mathrm{~mm}) \end{array}$	Measuredclearanc$e(m m)$	Remarks
			$\mathrm{V}_{\text {cose }}$	$\mathrm{V}_{\text {ot }}$					
Encapsulated type only:									
For class I and II construction									
A	1MOOP	Wh	240	340	3.0	$\begin{array}{\|l\|} \hline 1.6 \times 1.14 \\ =1.9 \\ \hline \end{array}$	6.4	6.4	$\begin{array}{\|l\|} \hline \text { Line - Neutral } \\ \text { before fuse } 1 \text {) } \\ \hline \end{array}$
E	1MOPP	Wl	240	352	4.0	$\begin{aligned} & \begin{array}{l} 2.5 \times 1.14 \\ =2.9 \end{array} \\ & \hline \end{aligned}$	6.1	2.9	$\begin{aligned} & \hline \begin{array}{l} \mathrm{CY} 1 \text { pin1 - } \\ \text { trace 1) 3) } \end{array} \\ & \hline \end{aligned}$
F	1MOPP	แk	240	352	4.0	$\begin{array}{\|l\|} \hline 2.5 \times 1.14 \\ =2.9 \end{array}$	6.1	6.1	$\begin{aligned} & \text { Trace-CY2 } \\ & \text { pin 2 1) } \end{aligned}$
c	2MOPP	Wlle	240	384	8.0	$\begin{aligned} & \begin{array}{l} 5.0 \times 1.14 \\ =5.7 \end{array} \\ & \hline \end{aligned}$	12.3	7.2	U1 pripinsec. pin 1) 3)
c	2MOPP	Wlle	312	544	12.0	$\begin{aligned} & \begin{array}{l} 7.0 \times 1.14 \\ =8.0 \end{array} \\ & \hline \end{aligned}$	13.1	9.9	$\begin{array}{\|l\|} \hline \text { T1 pripipo- } \\ \text { sec. RS29 1) } \\ \text { 3) } \end{array}$
c	2MOPP	Wlle	312	544	12.0	$\begin{aligned} & \begin{array}{l} 7.0 \times 1.14 \\ =8.0 \end{array} \end{aligned}$	18.0	18.0	$\begin{aligned} & \text { T1 priwinding } \\ & \text { /core - sec. } \\ & \text { pin ***) } \end{aligned}$
D	-	Wllb	312	544	--	--	4)	4)	4)
B	-	--	--	--	--	--	5)	5)	5)
Open frame type only:									
For class II construction									
A	1MOOP	Wll	240	340	3.0	$\begin{aligned} & \begin{array}{l} 1.6 \times 1.14 \\ =1.9 \end{array} \end{aligned}$	6.4	6.4	Line - Neutral before fuse 1)
E	1MOPP	Wh	240	352	4.0	$\begin{aligned} & 2.5 \times 1.14 \\ & =2.9 \end{aligned}$	6.1	2.9	$\begin{array}{\|l} \hline \text { Cr1 pin1 - } \\ \text { trace 1) 3) } \\ \hline \end{array}$
F	1MOPP	Wh	240	352	4.0	$\begin{aligned} & 2.5 \times 1.14 \\ & =2.9 \end{aligned}$	6.1	6.1	$\begin{array}{\|l} \hline \text { Trace-CY2 } \\ \text { pin 2 1) } \end{array}$
c	2MOPP	Wh	240	384	8.0	$\begin{aligned} & \begin{array}{l} 5.0 \times 1.14 \\ =5.7 \end{array} \\ & \hline \end{aligned}$	12.3	7.2	$\begin{aligned} & \text { U1 pxipin- } \\ & \text { sec. pin 1) 3) } \end{aligned}$
c	2MOPP	Whb	312	544	12.0	7.0x1.14	13.1	9.9	T1 pripin-

7.0 Illustrations

Illustration 2 - Spacings (Cont.)

											3)
C	2MOPP	Wh.	312	544		12.0		$\begin{aligned} & 7.0 \times 1.14 \\ & =8.0 \end{aligned}$	18.0	18.0	T1 priwioding /core - sec. pin ${ }^{* * *}$)
For class I construction, difference with class II construction only											
B	1MOPP	Uld.	240	340		4.0		$\begin{aligned} & 2.5 \times 1.14 \\ & =2.9 \end{aligned}$	4.7	4.7	Line/Neutral PE terminal trace (for Class I) (floating for class II, shall be evaluated in end product) 1)
External/Desktop type only:											
For class II construction											
A	1 MOOP	IUlV.	240	340		3.0		$\begin{aligned} & 1.6 \times 1.14 \\ & =1.9 \mathrm{~mm} \end{aligned}$	6.4	6.4	Line - Neutral before fuse 1)
D	2 MOPP	Wha	240	340		8.0		$\begin{aligned} & 5.0 \times 1.14 \\ & =5.7 \mathrm{~mm} \end{aligned}$	13.4	13.4	HS1 pri. to external accessible part through seam 2)3) ")
C	2 MOPP	Wha	240	352		8.0		$\begin{aligned} & 5.0 \times 1.14 \\ & =5.7 \mathrm{~mm} \end{aligned}$	12.2	9.0	$\begin{aligned} & \text { CY1 pin1- } \\ & \text { CY2 pin 2 1) } \\ & \text { 3) } \end{aligned}$
C	2 MOPP	Ull	240	384		8.0		$\begin{aligned} & \begin{array}{l} 5.0 \times 1.14 \\ =5.7 \mathrm{~mm} \end{array} \end{aligned}$	12.3	7.2	U1 pripin sec. pin 1) 3)
C	2 MOPP	Ulla	312	544		12.0		$\begin{aligned} & 7.0 \times 1.14 \\ & =8.0 \mathrm{~mm} \end{aligned}$	13.1	9.8	$\begin{aligned} & \text { T1 Ri.pin- } \\ & \text { sec. RS29 1) } \\ & \text { 3) } \end{aligned}$
C	2 MOPP	Ulla	312	544		12.0		$\begin{aligned} & 7.0 \times 1.14 \\ & =8.0 \mathrm{~mm} \end{aligned}$	18.0	18.0	T1 priwinding /core sec, pin ${ }^{* *)}$
For class I construction, difference with class II construction only											
B	1MOPP	lub	240	340		4.0		$\begin{aligned} & 2.5 \times 1.14 \\ & =2.9 \mathrm{~mm} \end{aligned}$	5.2	5.2	Line/Neutral PE terminal 2)
B	1MOPP	U10.	240	340		4.0		$\begin{aligned} & 2.5 \times 1.14 \\ & =2.9 \mathrm{~mm} \end{aligned}$	9.0	9.0	$\begin{aligned} & \hline \mathrm{CY} 1, \mathrm{CY} 2 \text { to } \\ & \mathrm{PE}(\mathrm{CY} 2 \text { sec. } \\ & \text { pin) 1) } \end{aligned}$
											Outer enclosure
E	1MOPP	U10.	240^{2}	-	4.0^{2}		$2.9{ }^{1}$		5.2	5.2	Mains part to secondary circuits (Y capacitor)
F	1MOPP	Whb	240^{2}	-	4.0^{2}		$2.9{ }^{1}$		5.2	5.2	Mains part to secondary circuits (Y capacitor)

7.0 Illustrations

Illustration 3 - Spacings (Cont.)

| TABLE: INSULATION DIAGRAM (GT*96600 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

7.0 Illustrations

Illustration 4 - Model list

GT*96600-**-T2/T2A/T3/T3A/T2L/T2AL/T3L/T3AL* Desktop models

Model	Output Voltage	Max. output current	Max. output power
GT $^{*} 96600^{* *}-$ T2/T2A/T3/T3A/T2L/T2AL/T3L/T3AL*	$5-6.7 \mathrm{~V}$	8 A	40 W
GT $\mathrm{T}^{*} 96600^{* *}-$			
T2/T2A/T3/T3A/T2LT2AL/T3L/T3AL*			

GT*96600***R2/R3A*External/Hybrid models

Model	Output Voltage	Max. output current	Max. output power
GT*96600-*x-R2/R3A ${ }^{*}$	5-6.7V	8A	40W
GT*96600-**-R2/R3A*	6.8-54V	6 A	60W

GT*91099_***-T2/T2A/T3/T3A/F/FW/P2/P3*External/Hybrid desktop or direct plug-in model or Open Frame or Encapsulated

Model	Output Voltage	Max. output current	Max. output power
GT*91099-* ${ }^{*} 9^{*}-\mathrm{T} 2 / \mathrm{T} 2 \mathrm{~A} / \mathrm{T}^{\text {/ }}$ /T3A/F/FW/P2/P3*	5-9V	6 A	50W
GT*91099- ${ }^{\text {² }} 5^{*}-\mathrm{T} 2 / \mathrm{T} 2 \mathrm{~A} / \mathrm{T} 3 / \mathrm{T} 3 \mathrm{~A} / \mathrm{F} / \mathrm{FW} / \mathrm{P} 2 / \mathrm{P} 3^{*}$	$9.1-15 \mathrm{~V}$	6 A	60W
GT*91099-*24*- T2/T2A/T3/T3A/F/FW/P2/P3**	$15.1-24 \mathrm{~V}$	4A	60W
GT*91099-* 48^{*} - T2/T2A/T3/T3A/F/FW/P2/P3**	24.1-48V	2.5 A	60W

Note: For 91099series, T2A model use C8 inlet.
Alternate Rating:
For models GTM96600-2005-R2 / GTM96600-2005-R3A: output 5VDC, 4.0A at Tma $=70$ Deg.C;
For models GTM96600-2412-R2 / GTM96600-2412-R3A output 12VDC, 2.0A at Tma=70 Deg.
For models GTM96600-2436-R2 / GTM96600-2436-R3A- output 36VDC, 0.66A at Tma $=70$ Deg. ,
For models GTM96600-2448-R2 / GTM96600-2448-R3A output 48VDC, 0.5 A at Tma 70 Deg.C;
For models GTM96600-2454-R2 / GTM96600-2454-R3A: output 54VDC, 0.44A at Tma=70 Deg.C.

7.0 Illustrations

Illustration 5 - Schematics

7.0 Illustrations

Illustration 6 - PCB layout of 96600 series

7.0 Illustrations

Illustration 7 - PCB layout of 91099 series

7.0 Illustrations

Illustration 8 - PCB layout of 91099 series (Cont.)

Open Frame type
Component side, Class I

Class II

7.0 Illustrations

Illustration 9 - Markings of 91099 series

Open Frame type

Class I

Class II

Encapsulated type

Class I

Class II

7.0 IIlustrations

Illustration 10 - Markings of 96600 series

Conforms to AAMI STD. ES 60601-1,IEC 60601-1-11 Certified to CAN/CSA STD.C22.2 NO.60601-1

The other models (refer to 2.0) have the same labels except the model number and rating.

8.0 Test Summary				
Evaluation Period	2016-09-18 to 2016-10-26		Project No. ${ }^{160}$	160900307SHA001
Sample Rec. Date	17-Sep-2016	Condition\|Prototype	Sample ID. 0	0160729-41
Test Location	Building No.86, 1198 Qinzhou Road (North), Shanghai 200233, China			
Test Procedure	Testing Lab			
Determination of the result includes consideration of measurement uncertainty from the test equipment and methods. The product was tested as indicated below with results in conformance to the relevant test criteria.				
The following tests were performed:				
		Medica Requir Perfo Medica Requir Performan	Equipment - P Basic Safety MI ES60601-1 Equipment - P Basic Safety 2.2\#60601-1 ssential Perfo Clause	Part 1: General And Essential $-1: 2005+A 1]$ Part 1: General And Essential :2014 Ed.31r Basic ormance
Test Description				
Power Input			4.11	
Humidity Preconditioning			5.7	
Accessible Parts			5.9.2	
Legibility of Markings			7.1.2	
Durability of Markings		7.1.3		
Plug Voltage and/or Energy		8.4.3		
Working Voltage Measurement		8.5.4		
Leakage Current Test terminations		8.7.4		
Dielectric Strength Means		8.8.3		
Ball Pressure Test			8.8.4.1	
Creepage \& Clearance Measurements		8.9.4		
Excessive Temperature			11.1	
Single Fault Conditions		13.2		
Push Test			15.3.2	
Impact Test			15.3.3	
Drop Test			15.3.4	
Mold Stress Relief			15.3.6	
Transformer Short-Circuit		15.5.1.2		
Transformer Overload			15.5.1.3	
Transformer Dielectric Strength			15.5.2	
\| ${ }^{\text {Test Description }}$			Medical Electrical Equipment - Part 1-11: General Requirements For Basic Safety And Essential Performance - Collateral Standard: Requirements For Medical Electrical Equipment And Medical Electrical Systems Used In The Home Healthcare Environment [IEC 60601-1-11:2015 Ed.2] Clause	
Environmental condition test of transport and storage		4.2.2		
Continuous operating conditions		4.2.3.1		
Shock test			10.1.2 a)	
Vibration test		10.1.2 b)		

8.1 Signatures

A representative sample of the product covered by this report has been evaluated and found to comply with the applicable requirements of the standards indicated in Section 1.0.

8.0 Test Summary			
Completed by:	Larry Zhong	Reviewed by:	Justin Yu
Title:	Project engineer	Title:	Project reviewer
Signature:	Lamy Zhong	Signature:	Zuan

9.0 Correlation Page For Multiple Listings

The following products, which are identical to those identified in this report except for model number and Listee name, are authorized to bear the ETL label under provisions of the Intertek Multiple Listing Program.

BASIC LISTEE	GlobTek, Inc.
Address	186 Veterans Drive NORTHVALE NJ 07647 USA
Country	USA
Product	Medical Power Supply

MULTIPLE LISTEE 1	None			
Address				
Country				
Brand Name				
ASSOCIATED				
MANUFACTURER				
Address				
Country				
MULTIPLE LISTEE 1 MODELS				

MULTIPLE LISTEE 2	None			
Address				
Country				
Brand Name				
ASSOCIATED				
MANUFACTURER				
Address				
Country				
MULTIPLE LISTEE 2 MODELS				

MULTIPLE LISTEE 3	None		
Address			
Country			
Brand Name			
ASSOCIATED			
MANUFACTURER			
Address			
Country			
MULTIPLE LISTEE 3 MODELS			

10.0 General Information

The Applicant and Manufacturer have agreed to produce, test and label ETL Listed products in accordance with the requirements of this Report. The Manufacturer has also agreed to notify Intertek and to request authorization prior to using alternate parts, components or materials.

COMPONENTS

Components used shall be those itemized in this Intertek report covering the product, including any amendments and/or revisions.

LISTING MARK

The ETL Listing mark applied to the products shall either be separable in form, such as labels purchased from Intertek, or on a product nameplate or other media only as specifically authorized by Intertek. Use of the mark is subject to the control of Intertek.

The mark must include the following four items:

1) applicable country identifiers "US" and/or "C" or "US", "C" and "EU"
2) the word "Listed" or "Classified" or "Recognized Component" (whichever is appropriate)
3) a control number issue by Intertek
4) a product descriptor that identifies the standards used for certification. Example:

For US standards, the words, "Conforms to" shall appear with the standard number along with the word, "Standard" or "Std." Example: "Conforms to ANSI/UL Std. XX."

For Canadian standards, the words "Certified to CAN/CSA Standard CXX No. XX." shall be used, or abbreviated, "Cert. to CAN/CSA Std. CXX No. XX."

Can be used together when both standards are used.
Note: A facsimile must be submitted to Intertek, Attn: Follow-up Services for approval prior to use.
The facsimile need not have a control number. A control number will be issued after signed Certification
Agreements have been received by the Follow-up Services office, approval of the facsimile of your proposed Listing Mark, satisfactory completion of the Listing Report, and scheduling of a factory assessment in your facility.

MANUFACTURING AND PRODUCTION TESTS

Manufacturing and Production Tests shall be performed as required in this Report.

FOLLOW-UP SERVICE

Periodic unannounced audits of the manufacturing facility (and any locations authorized to apply the mark) shall be scheduled by Intertek. An audit report shall be issued after each visit. Special attention will be given to the following:

1. Conformance of the manufactured product to the descriptions in this Report.
2. Conformance of the use of the ETL mark with the requirements of this Report and the Certification Agreement.
3. Manufacturing changes.
4. Performance of specified Manufacturing and Production Tests.

In the event that the Intertek representative identifies non-conformance(s) to any provision of this Report, the Applicant shall take one or more of the following actions:

1. Correct the non-conformance.
2. Remove the ETL Mark from non-conforming product.
3. Contact the issuing product safety evaluation center for instructions.

10.1 Evaluation of Unlisted Components

Because Unlisted Components are uncontrolled, and they do not fall under a third party follow up program, Intertek may require these components to be tested and/or evaluated at least once annually, more often for certain components, as part of the independent certification process. The Unlisted Components in Section 5.0 require testing and/or evaluation as indicated.

Note to Intertek Follow Up Inspector: The Component Evaluation Center, CEC, will notify you in writing when these components must be selected and sent to the CEC for re-evaluation

Ship the samples to:
Intertek Testing Services Shanghai Limited
ETL Component Evaluation Center
Building No. 86, 1198 Qinzhou Road (North)
Shanghai 200233, China
Attn: Ms. Dansy Xu
Sample Disposition: Due to the destructive nature of the testing, all samples will be discarded at the conclusion of testing unless, the manufacturer specifically requests the return of the samples. The request for return must accompany the initial component shipment.

11.0 Manufacturing and Production Tests

The manufacturer agrees to conduct the following Manufacturing and Production Tests as specified:

Required Tests

Dielectric Voltage Withstand Test

11.1 Dielectric Voltage Withstand Test

Method

One hundred percent of production of the products covered by this Report shall be subjected to a routine The test shall be conducted on products, which are fully assembled. Prior to applying the test potential, all switches, contactors, relays, etc., should be closed so that all primary circuits are energized by the test potential. $\ddot{\text { The }} \ddot{\text { e test voltage specified below shall be applied between primary circuits and accessible dead-metal parts. The }}$ test voltage may be gradually increased to the specified value but must be maintained at the specified value for one second or one minute as required.

Test Equipment

The test equipment shall incorporate a transformer with an essentially sinusoidal output, a means to indicate the The test equipment shall incorporate a voltmeter in the output circuit to indicate directly the applied test potential If the rated output of the test equipment is 500VA or more, the applied test potential may be indicated by either: 1 - a voltmeter in the primary circuit;

Products Requiring Dielectric Voltage Withstand Test:		
Product	Test Voltage	Test Time
All the product covered by this report		
Between L/N and secondary output for Class II and open frame model	4000 VAC	1 s
All the product covered by this report Between L/N and secondary output(earthing) for Class I model	1500VAC	1 s

12.0 Revision Summary

The following changes are in compliance with the declaration of Section 8.1:

Date/ Proj \# Site ID	Project Handler/ Reviewer	Section	Item	Description of Change
				None

